Intrathecal immunoglobulin M synthesis is associated with higher disease activity and severity in multiple sclerosis

Johanna Oechtering, MD; Sabine Schädelin, MSc; Pascal Benkert, PhD; Stefanie Müller, MD; Lutz Achtenichts, MD; Jochen Vehoff, MD; Giulio Disanto, MD, PhD; Oliver Findling, MD; Bettina Fischer-Barnicol, MD; Annette Orleth, PhD; Andrew Chan, MD; Anke Salmen, MD; Caroline Pot, MD; Cristina Granziera, MD, PhD; Ingmar Heijnen, PhD; Patrice H. Lalive, MD; Jens Wuerfel, MD; Muhamed Barakovic, MSc; Riccardo Galbusera, MD; David Conen, PhD; Yvonne Naegelin, MD; Klaus Berger, PhD; Heinz Wiendl, PhD; Jorge Oksenberg, PhD; Therese Lincke, MD; Johanna Lieb, MD; Özgür Yaldizli, MD; Tim Sinnecker, MD; Tobias Derfuss, MD; Axel Regeniter, MD; Chiara Zecca, MD; Claudio Gobbi, MD; Ludwig Kappos, MD; David Leppert, MD; Jens Kuhle, MD, PhD for the Swiss Multiple Sclerosis Cohort Study

1Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Switzerland
2Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
3Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
4Department of Neurology, Cantonal Hospital Aarau, Switzerland
5Neurocentre of Southern Switzerland, Multiple sclerosis centre, Ospedale Civico, Lugano, Switzerland
6Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
7Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
8Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
9 Division of Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
10 Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospital, Geneva, Switzerland
11 Diagnostic Department, Division of Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland
12 Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
13 Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University Basel, Basel, Switzerland
14 Cardiovascular research institute Basel, University Hospital Basel, Basel, Switzerland
15 Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
16 Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
17 Department of Neurology, University of California San Francisco, San Francisco, USA
18 Division of Neuroradiology, Department of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Switzerland
19 Medica Laboratory, Zürich, Switzerland
20 Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
Abstract

Introduction:
Biomarkers predicting acute inflammatory activity and chronic worsening of multiple sclerosis (MS) are in need for individually adapted therapy (precision medicine). We aimed to determine how in relapsing MS (RMS) intrathecal immunoglobulin M (IgM) synthesis, in addition to presence of IgG synthesis, is associated with 1.) time to first relapse, 2.) degree of neuronal damage, 3.) MRI disease activity, 4.) clinical disability and 5.) choice of therapy.

Methods:
Cerebrospinal fluid measurements, clinical, MRI data as well as Serum neurofilament light chain (sNfL) concentrations from 530 patients with RMS in the observational longitudinal Swiss MS Cohort Study were included. Patients were either untreated (197 individuals) or under disease modifying therapies (DMTs) according to national treatment algorithms. Patients were categorized by presence or absence of oligoclonal IgG bands (OCGB), and intrathecal IgG and IgM fraction (IgG_{Intrathecal Fraction (IF)}, IgM_{IF}). Time to first relapse and associations with sNfL concentrations, total and new/enlarging T2w lesions, MS Severity Score (MSSS), and first initiation of a high efficacy therapy were analyzed in uni- and multivariable (adjusted for age at first symptoms, sex and DMT category) statistical models.

Results:
By categorical analysis, the median time to first relapse in patients with IgM_{IF} was 28 months shorter (HR 1.944 [CI 1.237; 3.054], p<0.01) and they had on average a 1.11 steps higher MS Severity Score ([CI 0.382, 1.843], p<0.01) compared to patients without any immunoglobulin synthesis. Moreover, they had more yearly new/enlarging T2w lesions with an incidence ratio of 3.13 ([CI 1.29; 7.58], p=0.01), higher sNfL-Z-scores and higher total T2w lesion counts (IR 2.53[CI 1.63, 3.93], p<0.01). Eventually, those patients with additional IgM_{IF}+ also had a shorter interval from disease onset to a first relapse (HR 1.944 [CI 1.237; 3.054], p<0.01). These associations were absent, or smaller by a similar level degree, in patients only positive for OCGB or OCGB/IgG_{IF}.

Furthermore, quantitative analyses revealed that in patients with IgM_{IF>median}, time to a first relapse and to escalation to high efficacy therapy was 32 (HR 1.851 [CI 1.172, 2.922], p<0.01) and 203 (HR 2.347[CI 1.325, 4.156], p<0.01) months earlier, respectively, versus those with IgM_{IF<median}; similar dose-dependent associations were found for MRI disease activity and sNfL-Z-scores. Again, no corresponding correlations of these measures with IgG_{IF} levels were observed.

Conclusion:
Intrathecal Immunoglobulin M synthesis is a biomarker associated with higher clinical (relapse, progression) and paraclinical (MRI lesional load, neuronal loss) disease activity and severity, and earlier escalation to high efficacy DMTs and may support its use for therapeutic decision making in early MS.